Lipoxygenase metabolism is required for interleukin-3 dependent proliferation and cell cycle progression of the human M-07e cell line

Author(s):  
Alan M. Miller ◽  
Beverly Steele Allen ◽  
Vincent Ziboh
2010 ◽  
pp. NA-NA ◽  
Author(s):  
Gabriele Spittau ◽  
Nicole Happel ◽  
Maik Behrendt ◽  
T. Ivo Chao ◽  
Kerstin Krieglstein ◽  
...  

2008 ◽  
Vol 40 (1) ◽  
pp. 27 ◽  
Author(s):  
Un-Young Yu ◽  
Je-Eun Cha ◽  
Sun-Young Ju ◽  
Kyung-Ah Cho ◽  
Eun-Sun Yoo ◽  
...  

Author(s):  
S. Marais ◽  
T.V. Mqoco ◽  
B.A. Stander ◽  
R. Prudent ◽  
L. Lafanechère ◽  
...  

It can be concluded that compound-X induced both autophagy and apoptosis as a means of celldeath in HeLa cells.


1993 ◽  
Vol 35 (3) ◽  
pp. 265-269 ◽  
Author(s):  
Oriana Trubiani ◽  
Roberto Di Primio ◽  
Loris Zamai ◽  
Domenico Bosco ◽  
F.J. Bollum ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 202-202
Author(s):  
Takafumi Nakao ◽  
Amy E Geddis ◽  
Norma E. Fox ◽  
Kenneth Kaushansky

Abstract Thrombopoietin (TPO), the primary regulator of megakaryocyte (MK) and platelet formation, modulates the activity of multiple signal transduction molecules, including those in the Jak/STAT, p42/p44 MAPK, and phosphatidylinositol 3-kinase (PI3K)/Akt pathways. In the previous study, we reported that PI3K and Akt are necessary for TPO-induced cell cycle progression of primary MK progenitors. The absence of PI3K activity results in a block of transition from G1 to S phase in these cells (Geddis AE et al. JBC2001276:34473–34479). However, the molecular events secondary to the activation of PI3K/Akt responsible for MK proliferation remain unclear. In this study we show that FOXO3a and its downstream target p27Kip1 play an important role in TPO-induced proliferation of MK progenitors. TPO induces phosphorylation of Akt and FOXO3a in both UT-7/TPO, a megakaryocytic cell line, and primary murine MKs in a PI3K dependent fashion. Cell cycle progression of UT-7/TPO cells is blocked in G1 phase by inhibition of PI3K. We found that TPO down-modulates p27Kip1 expression at both the mRNA and protein levels in UT-7/TPO cells and primary MKs in a PI3K dependent fashion. UT-7/TPO stably expressing constitutively active Akt or a dominant-negative form of FOXO3a failed to induce p27Kip1 expression after TPO withdrawal. Induced expression of an active form of FOXO3a resulted in increased p27Kip1 expression in this cell line. In an attempt to assess whether FOXO3a has an effect of MK proliferation in vivo, we compared the number of MKs in Foxo3a-deficient mice and in wild type controls. Although peripheral blood cell counts of erythrocytes, neutrophils, monocytes and platelets were normal in the Foxo3a-deficient mice, total nucleated marrow cell count of Foxo3a-deficient mice were 60% increased compared with wild type controls. In addition, the increase of MKs was more profound than that of total nucleated marrow cells; CD41+ MKs from Foxo3a-deficient mice increased 2.1-fold, and mature MKs with 8N and greater ploidy increased 2.5-fold, compared with wild type controls. Taken together with the previous observation that p27Kip1-deficient mice also display increased numbers of MK progenitors, our findings strongly suggest that the effect of TPO on MK proliferation is mediated by PI3K/Akt-induced FOXO3a inactivation and subsequent p27Kip1 down-regulation in vitro and in vivo.


1998 ◽  
Vol 18 (6) ◽  
pp. 3445-3454 ◽  
Author(s):  
Zhao-Jun Liu ◽  
Takahiro Ueda ◽  
Tadaaki Miyazaki ◽  
Nobuyuki Tanaka ◽  
Shinichiro Mine ◽  
...  

ABSTRACT Cyclin C, a putative G1 cyclin, was originally isolated through its ability to complement a Saccharomyces cerevisiae strain lacking the G1 cyclin geneCLN1-3. Unlike cyclins D1 and E, the other two G1 cyclins obtained by the same approach and subsequently shown to play important roles during the G1/S transition, there is thus far no evidence to support the hypothesis that cyclin C is indeed critical for the promotion of cell cycle progression. In BAF-B03 cells, an interleukin 3 (IL-3)-dependent murine pro-B-cell line, cyclin C gene mRNA was induced at the G1/S phase upon IL-3 stimulation and reached a maximal level in the S phase. Enforced expression of exogenous cyclin C in this cell line failed to alter its growth properties. In the present study, we examined whether cyclin C is capable of cooperating with the cytokine-responsive immediate-early gene products c-Myc and c-Fos in the promotion of cell proliferation. We found that cyclin C is able to cooperate functionally with c-Myc, but not c-Fos, to induce both BAF-B03 cell proliferation in a cytokine-independent fashion and the formation of cell clusters. Furthermore, cyclin C was primarily responsible for the induction of cdc2 gene expression. Our data define a novel role for cyclin C in the regulation of both the G1/S and G2/M phases of the cell cycle, and this effect appears to be independent of the activity of CDK8 in the control of transcription.


2004 ◽  
Vol 165 (5) ◽  
pp. 609-615 ◽  
Author(s):  
Yumi Uetake ◽  
Greenfield Sluder

Failure of cells to cleave at the end of mitosis is dangerous to the organism because it immediately produces tetraploidy and centrosome amplification, which is thought to produce genetic imbalances. Using normal human and rat cells, we reexamined the basis for the attractive and increasingly accepted proposal that normal mammalian cells have a “tetraploidy checkpoint” that arrests binucleate cells in G1, thereby preventing their propagation. Using 10 μM cytochalasin to block cleavage, we confirm that most binucleate cells arrest in G1. However, when we use lower concentrations of cytochalasin, we find that binucleate cells undergo DNA synthesis and later proceed through mitosis in >80% of the cases for the hTERT-RPE1 human cell line, primary human fibroblasts, and the REF52 cell line. These observations provide a functional demonstration that the tetraploidy checkpoint does not exist in normal mammalian somatic cells.


Sign in / Sign up

Export Citation Format

Share Document